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A near infrared (NIR) method was developed for determination of tablet potency of active pharmaceutical
ingredient (API) in a complex coated tablet matrix. The calibration set contained samples from laboratory
and production scale batches. The reference values were obtained by high performance liquid chromatog-
raphy (HPLC) and partial least squares (PLS) regression was used to establish a model. The model was
challenged by calculating tablet potency of two external test sets. Root mean square errors of predic-
tion were respectively equal to 2.0% and 2.7%. To use this model with a second spectrometer from the
production field, a calibration transfer method called piecewise direct standardisation (PDS) was used.
After the transfer, the root mean square error of prediction of the first test set was 2.4% compared to 4.0%
ear infrared spectroscopy

ablet potency
artial least squares
alibration transfer
onfidence interval

without transferring the spectra. A statistical technique using bootstrap of PLS residuals was used to esti-
mate confidence intervals of tablet potency calculations. This method requires an optimised PLS model,
selection of the bootstrap number and determination of the risk. In the case of a chemical analysis, the
tablet potency value will be included within the confidence interval calculated by the bootstrap method.
An easy to use graphical interface was developed to easily determine if the predictions, surrounded by
minimum and maximum values, are within the specifications defined by the regulatory organisation.
. Introduction

Near infrared spectroscopy has been used for many years in
harmaceutical firms for water content estimations [1], content
niformity controls [2] or counterfeit product investigations [3].
harmaceutical firms adopted NIR spectroscopy because of the
umerous advantages offered by this technique: high speed, free-
om from pollution, no need for reagents or sample preparations,
on destructive and capable of providing information about API
nd other components of a tablet [4–6]. However, although NIR
pectra contain a lot of information, this technique requires a good
nowledge of chemometric tools for analysis and interpretation
f the data. It can be assumed that NIR spectra contain two kinds
f information: the first can be defined as a chemical part, which
s constituted by tablet components (API and constituents) and
he second can be defined as a physical part, which is constituted

y uncontrollable factors such as light variation or surface of the
ablet [7]. Fourier-transform NIR (FT-NIR) spectroscopy associated
ith multivariate data analysis were used to build a model for

ablet potency of coated tablets from Servier. To ensure uniform
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731-7085/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2010.09.029
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potency of low-dose drugs, a content uniformity test based on
tablet potency results is required for tablet release to the patients.
It ensures the presence of accurate and uniform API content in the
dosage unit. The sample preparation for conventional analytical
methods of dosage unit determinations typically involves dissolv-
ing, extracting, and diluting API into a solution of appropriate
concentration that can be accurately detected by chromatogra-
phy.

PLS regression is one of the best known chemometric tools used
to carry out this kind of data analysis. However, using the spectra
acquired on a second spectrometer (such as a production spectrom-
eter) with the model previously built on a specific spectrometer is
a real problem [8]. A technique called Piecewise Direct Standard-
ization (PDS) performs a spectra transformation by using transfer
samples recorded by the two spectrometers [9]. The transfer func-
tion established is essential to use the same model with spectra
acquired on different spectrometers.

The model quality can be assessed by studying root mean square
errors (of calibration or prediction), or by studying scores, load-

ings and error matrix supplied by the model. Nevertheless, none of
these results and parameters were able to estimate the confidence
intervals of NIR tablet potency calculated by the model. To assess
these intervals, an approach using the bootstrap of PLS residuals
was tested.

dx.doi.org/10.1016/j.jpba.2010.09.029
http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
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dx.doi.org/10.1016/j.jpba.2010.09.029
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This paper describes and explains the steps to develop a whole
ablet potency model for the laboratory and the production envi-
onment. A technique based on the bootstrap of the PLS residuals
as evaluated to estimate confidence intervals of tablet potency

stimations.

. Materials and methods

.1. General methodology

The aim of the study was the development of an alterna-
ive method to HPLC for tablet potency determination in the
evelopment and the production environment. The tablet potency
stimations have been included in a confidence interval. The gen-
ral methodology used for tablet potency determination by NIR
pectroscopy (model created in the lab or in production) started
ith the selection of a set of calibration tablets with varied API con-

ent spanning the range of analysis. Spectra were collected with
NIR spectrometer, and the true API contents were established

fterwards by a reference method (high performance liquid chro-
atography). The calibration model was developed by correlating
IR spectra with API content using a multivariate regression tech-
ique (partial least squares). Once the model was built from the
esearch and development spectra, spectra were acquired with the
roduction spectrometer and a transfer method was used to cor-
ect spectra differences. The last step consisted in determining the
onfidence interval for each tablet potency calculated by the model.
he technique used was based on the bootstrap of the PLS residuals.

.2. Instrument and data acquisition

Spectral dataset were acquired from two FT-NIR ABB Bomen
B160 series instruments (ABB Bomen, Québec, Canada), using

he transmittance mode, a tungsten–halogen lamp, a quartz beam-
plitter and an indium gallium arsenide detector. Even if these two
nstruments were supplied by the same company and were quali-
ed properly and comparatively, there were still spectra differences
etween acquisitions. These variations were due to lamp inten-
ity differences, or because of different distances between sample
nd detectors, or optical variations between instruments. These
wo spectrometers were called primary (research and development
pectrometer) and secondary (production field spectrometer). A 30
ositions tablet sampler accessory was used in order to collect spec-
ra. This accessory ensured that tablets fit well on it. The light passed
hrough the tablet to extract the whole tablet information thanks
o the hole on the accessory. Background references were recorded
n Spectralon® each time the detector was moved. Spectra were
cquired with Gram’s version 2.2 (Thermo Fischer Scientific Inc.,
altham, MA). Measurements were carried out at room tempera-

ure (22 ± 1 ◦C) with a resolution of 16 cm−1 over the spectral range
0,000–7800 cm−1 and 128 scans were co-added. Data were anal-
sed with Matlab R2008b (The Mathworks Inc., Natick, MA), PLS
oolbox version 5.0.3 (Eigenvector Research Inc., Wanetchee, WA),
nd homemade toolboxes.

.3. Samples

Stablon® is an anti-depressant commercialised by Les Labora-
oires Servier. It is also known as Tianeptine (Sodium salt) and
ontains 12.5 mg of API in the commercial drugs. The API has only
ne known solid state form. Major core excipients are mannitol,

alc, magnesium stearate and maize starch. The calibration set
mployed in this study was made up of 45 spectra collected from
5 tablets of Stablon®. A range from 70% to 130% of API in tablets
as manufactured by the formulation department (5 spectra for

0%, 80%, 90%, 100%, 110%, 120%, 130% of API tablet potency) and
Biomedical Analysis 54 (2011) 510–516 511

to include the production variability, spectra of 10 tablets from pro-
duction batches (each production was manufactured with different
batches of API and excipients) were added to the calibration set. The
NIR light went through the sugar coated drugs to record the whole
tablet information. Two external test sets were used to challenge
the performance of the model. The first one (called test set 1) was
composed of 30 samples from a production batch. The second one
(called test set 2) was composed of 26 tablets from a second produc-
tion batch with different batches of API and excipients and 4 tablets
from two batches of 70% and 130% of the 12.5 mg API tablets.

Reference drug content values of the individual tablets
were measured off-line using an isocratic reversed-phase
high-performance liquid chromatography with ultraviolet (UV)
detection. The chromatographic conditions involved using a
4.6 mm × 50 mm column (Chromolith speedROD RP-18e, Merck
KgaA, Darmstadt, Germany). The mobile phase was composed of
a acetonitrile/phosphate buffer (pH 5.4)/water (37:40:23, v/v/v).
An Agilent 1200 Series Rapid Resolution chromatographic system
coupled to an Agilent 1200 Series multiple wavelength detector
SL was used Agilent Technologies, France). The flow rate was
set to 4.5 ml/min with 20 �l sample injections. The detection
was centered at 220 nm. The reference method was validated in
compliance with the requirements of the International Conference
on Harmonisation (ICH) [10]. Table 1 shows the results of the
HPLC validation performed with e-noval V2.0 Prod (Arlenda,
Liège, Belgium). It fully complies with the ICH Q2(R1) regulatory
documents as it integrates the required validation criteria such as
accuracy, trueness, precision, limits of quantification, range and
linearity.

2.4. Partial least squares

PLS regression [11] is a well-known chemometric technique
used in spectroscopy to set up quantitative models. In this study,
the model was built using a calibration set of 45 samples. The num-
ber of latent variables was optimised by studying root mean square
error of calibration (RMSEC) and root mean square error of cross
validation (RMSECV).

2.5. Piecewise direct standardization

The piecewise direct standardization [12] method is an
improvement on the direct standardization (DS) method [13]. The
PDS method transfers spectra from the secondary instrument to the
primary instrument (where the calibration model was developed).
Spectral intensity at a specific wavelength on the primary spec-
trometer is related to a spectral window containing the intensities
(at the same wavelength and a few neighbouring wavelengths) on
the secondary instrument.

A subset of samples (also called transfer calibration samples)
was selected by the Kennard–Stone algorithm [14] to extract sam-
ples with a large influence within the calibration set.

Once spectra of the subset spectra were collected, each
wavenumber response j from primary instrument S1 were related
to a specified window around j measured on the secondary instru-
ment S2:

S1,j = S2[j−n,...,j+n]bj (1)

where S1 is the response of the primary instrument at wavenum-
ber j, S2 is the response of the secondary instrument within the

wavenumber window n and bj is the vector of transformation coef-
ficients for the jth wavelengths.

Local multivariate transfer models were established between
spectral windows of the secondary instrument and the central point
in each corresponding spectral window of the primary instrument.
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Table 1
Validation results obtained for the dosage units of the drug substance.

Criteria Conclusion

Linearity The linearity was assessed statistically for five calibration points between 70 and 130% of
the theoretical drug substance content per tablet (70, 85, 100, 115, 130%)
Recovery: 100.3%
Bias: 0.3%

Precision The precision of the method was determined for each level of linearity
Level (%) Repetability(RSD%) Intermediate precision (RSD%)

70 0.20 0.20
85 0.15 0.39
100 0.17 0.48
115 0.16 0.60
130 0.32 0.51

Accuracy profile The method was validated on the range 0.0877–0.1597 mg/ml
he Tia
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SD: relative standard deviation.

LS or Principal Component Regression can be used in the mod-
lling step. The number of eigenvalues to retain for local models
as predetermined based on a tolerance value [15,16].

The values of bj were assembled to form a diagonal matrix F:

= diag(bT
1, . . . , bT

k ) (2)

here k is the number of wavenumber elements, and T is the trans-
osition matrix of b.

Spectra from the secondary instrument can be projected to the
rimary instrument space:

ˆ2 = XT
2 · F (3)

here X2 is the spectra matrix of the secondary instrument.
Two parameters were set before using the PDS method: the win-

ow size and the tolerance value which was used in forming the
ocal models. The advantages of PDS are the correction of wave-
ength shifts and intensity variations. One of the difficulties can
e attributed to the bad quality of the spectra (hard frequency
oise for example) which can be reduced by using preprocessing
ethod as standard normal variate, multivariate scatter correction

r derivatives.

.6. Estimation of confidence intervals

Aji et al. [17] proposed a bootstrap method to determine con-
dence intervals of chemical properties of oil. In this paper, this
pproach was adapted to the pharmaceutical environment. The
ethod was used to evaluate the lower and upper intervals of the

ablet potency calculations. The confidence interval estimation for
calculated concentration is a real question in the pharmaceutical
eld and several approaches have been tested [18,19]. In this paper,
he bootstrap [20] was used to resample residuals from PLS regres-
ion. This method consists in a random sampling with replacement
f PLS residuals.

Once the PLS model was developed and optimised, residuals εi
ere calculated as follows:

i = Yi − Ŷi (4)

here Y is the concentration established by the reference method
nd Ŷ the concentration calculated by the model for a calibration
ample i.

As the resampling method of PLS residuals will underestimate

rror variability, mean centered residuals were standardized by
sing the variance.

Standardized residuals are randomly sampled b times with
eplacement to obtain a matrix ε̃∗b

h,i
of standardized bootstrapped

esiduals.
neptine content) at a risk of

Bootstrapped residuals ε̃∗b
h,i

are added to the PLS tablet potency

calculations Ŷi to obtain new estimated calculations Y∗b
h

:

Y∗b
h = Ŷh + ε̃∗b

h,i (5)

Once these new estimated calculations were established, the
PLS projection of Y∗b

h
on the PLS latent variables gave the bootstrap

estimators. The entire development of the model and the estima-
tion of intervals assumed that the non-linear iterative partial least
squares algorithm [21] was used to set up the model. For this kind
of model, a PLS regression model can be written as:

Y = t1c1 + · · · + thch + yh (6)

where Y is the estimation of tablet potency, t the component and c
the regression coefficient associated to the hth latent variable.

The new regression coefficients from the new estimated calcu-
lation are determined as follows:

C∗b
h = (t′

hth)−1t′
hY∗b

h (7)

where th is the score value of the PLS model for the latent variable
h and Y∗b

h
the new estimated calculations from Eq. (5).

The bootstrap estimator ˆ̌ ∗b
h

of the coefficient matrix is then
calculated as:

ˆ̌ ∗b
h = Wh(P ′

hWh)−1C∗b
h (8)

where Wh and Ph are respectively the loading weight and loading of
the PLS model for a specific latent variable h, and C∗b

h
the regression

coefficients calculated in (7).
The bootstrap estimator allows the calculation of new tablet

potency values Ŷ∗b
h,i

:

Ŷ∗b
h,i = Xi

ˆ̌ ∗b
h (9)

where ˆ̌ ∗b
h

is the bootstrap estimator calculated in Eq. (8) and Xi the
calibration set matrix.

Finally, the bootstrapped estimated error for each observation i
is calculated:

y∗b
h,i = Y∗b

h,i − Ŷ∗b
h,i (10)

where Y∗b are the new estimated calculations determined in Eq. (5)

h,i

and Ŷ∗b
h,i

the new tablet potency values calculated in Eq. (9).

The quantiles of the distribution of y∗b
h,i

are used to design the
confidence interval. To obtain an individual confidence interval for
each sample, the percentile-t method was used. For each bootstrap,
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Fig. 2. Root mean square error of calibration (—) and root mean square error of

RMSEC =
n

(16)

where ŷi are the values of the predicted variable when all the sam-
ples are included in the model formation and n is the number of
calibration samples. RMSEC is a measure of how well the model
ig. 1. Calibration set spectra. This figure shows the spectra of the 45 tablets from
he calibration set.

statistical coefficient z is calculated as follows:

∗b
h,i =

y∗b
h,i

s(y∗b
h,i

)
(11)

here y∗b
h,i

is the result of Eq. (10) and s is calculated as follows:

2(y∗b
h,i) = �̂2∗b

h (1 − Th,i(T
′
hTh)−1T ′

h,i) (12)

here T is the scores from the PLS model, h the latent variable, i the
ample and � calculated as follows:

ˆ 2∗b
h = 1

n − h

∥∥Y∗b
h − Ŷ∗b

h

∥∥2
(13)

here Y∗b
h

is the result of Eq. (5), Y∗b
h

the result of Eq. (9), n is the
umber of samples and h the number of latent variables.

The quantiles of the z distribution, defined for a specified risk,
ere used to determine the confidence interval of tablet potency

alculations. The confidence intervals are asymmetrical and spe-
ific to each sample. The PLS calculations of tablet potency are
urrounded by lower and upper limits defined in Eq. (14).

Ŷh − s(yh,i)q(1−˛), Ŷh − s(yh,i)q(˛)] (14)

here Ŷh is the tablet potency value calculated by the model, s the
quare root of Eq. (12) and q the quantile at the specific risk ˛ equal
o 1% in this paper.

Estimations of confidence intervals can also be carried out with
n external test set. In this case, the bootstrap estimator calculated
rom the calibration set is used for new tablet potency determina-
ion and the new bootstrapped estimated errors are defined as:

∗b
h,i = Ŷt,i − Xt,i · ˆ̌ ∗b

h (15)

here Ŷt,i is the tablet potency value calculated by the PLS model,

t,i spectra matrix of the external test set and ˆ̌ ∗b
h

the bootstrap
stimator calculated in (8).

. Results and discussion
.1. Tablet potency model

Spectra of the 45 calibration samples were acquired with
he research and development spectrometer between 10,000 and
800 cm−1 (Fig. 1). Tablet potencies of API were then measured with
cross validation (– –) calculated from the calibration set to select the number of
latent variables. RMSEC and RMSECV are respectively equal to 1.7 and 2.0. This figure
represents the evolution of calibration errors (RMSEC and RMSECV) according to the
number of latent variables. The optimal number of latent variable was 5.

high performance liquid chromatography to obtain reference val-
ues for each tablet. The wavelengths corresponding to the API were
identified and selected to avoid the variations induced by differ-
ent batches of excipients and data were mean centered. Five latent
variables were chosen to build the PLS model (Fig. 2) resulting in
an RMSEC equal to 1.7% and an RMECV equal to 2.0%. Fig. 3 shows
the relation between the percentage of API measured by HPLC and
the percentage of API calculated by the model. Root mean square
error of calibration (RMSEC) and root mean square error of cross
validation (RMSECV) were calculated as:√∑n

i=1(ŷi − yi)
2

Fig. 3. Tablet potency percentages estimated by the model during the calibration
step. This figure shows the relation between the tablet potencies measured by HPLC
and the tablet potencies calculated by the model. The model used 5 latent variables,
errors of calibration and cross validation were equal to 1.7% and 2.0%, respectively.
This low values of errors associated with a R2 close to 1 meant that the calibration
model was optimized.
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Fig. 4. Transfer samples numbered according to the order of selection by the Ken-
nard et Stone algorithm (PC1, PC2 and PC3 explain more than 99.9% of the total
variance). This figure represents the results of a PCA analysis on the calibration set.

of the external test set were not satisfactory with a RMSEP equal
to 4.0%. By using the transfer function, differences between spec-
tra acquired on development and production apparatus were
decreased, and the tablet potencies were predicted with a RMSEP

Fig. 5. RMSEP variation of the test set 1 according to the latent variable number and
14 M. Boiret et al. / Journal of Pharmaceutic

ts the data.

MSECVk =
√

PRESSk

n
(17)

here k refers to the number of latent variables used in the model,
nd n is the number of calibration samples. PRESSk (Predicted
esidual Error Sum of Squares) is the sum of squared prediction
rrors for the model which includes k factors.

Linear regression was performed between the reference values
y) and the calculated model values (ŷ). To evaluate goodness of fit
f the model and to measure how well the regression line approxi-
ates the real data points, the coefficient of determination R2 was

alculated as:

2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

(18)

here yi is the measured value by the reference method, ŷi the
alculated value and ȳ the mean of the measured value.

The model was evaluated by studying linearity and low error
alues of the calibration step. Spectra from two external test sets
ere collected by NIR to calculate the root mean square error of
rediction (RMSEP) as:

MSEP =
√∑n

i=1(yi − ŷi)
2

n
(19)

here yi is the tablet potency determined by the reference method,
ˆ i the tablet potency calculated by the model and n the number of
bservations.

The RMSEP calculated for test set 1 and test set 2 were equal to
.0% and 2.7%, respectively.

.2. Model transfer

Due to spectroscopic variability, spectra acquired with the
roduction spectrometer were not usable with the PLS model
eveloped in part 3.1. When using the model with the first external
est set acquired on the production spectrometer, the RMSEP was
qual to 4.0% which was considered too high for tablet potency
etermination. Even if the spectrometers were supposed to be

dentical, spectral variations were observed, which excluded the
ossibility of using the same model with these two spectrometers.

nstead of developing a complete recalibration, the PDS transfer
ethod was applied. To perform this transfer method, spectra

properly selected) from the calibration set were acquired from the
wo spectrometers. To explore the variability within the calibration
et, a principal component analysis was executed on the data.

Fig. 4 shows the score plot corresponding to the first three
rincipal components of the calibration set. The first component
xplained more than 99% of the variability which was essentially
ue to the light scattering effect. This effect could have been
educed by using preprocessing such as standard normal variate
SNV) or multivariate scattering correction (MSC) but the results of
he model were not better than the results obtained with the mean
entered preprocessing. It was decided to chose the preprocessing
ccording to the best model errors and tablet potency calculations.
he Kennard and Stone algorithm selected the sample marked with
circle as transfer samples (5 samples which represent 11% of the

alibration set) to cover the variability of the data. As expected,
ransfer sample spectra acquired on the development spectrometer
nd the production spectrometer were different, mainly in terms

f baseline variations (results not shown).

The window size parameter, essential to set up the PDS method,
as optimised. Fig. 5 shows the impact of the window size parame-

er on the error of prediction of test set 1 (composed of 30 samples
rom a production batch). The effect of the window size was not
This 3D representation shows the dispersion of the 45 samples within the three
first components of the PCA. Samples surrounded in red were used as transfer sam-
ples. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

obvious compared to the effect of the number of latent variables.
The PDS window was not a critical choice as there were no or fewer
wavelength variations between the two instruments. A window
size of 11 was selected because it gave the lowest RMSEP with 5
latent variables.

Before the calibration transfer, the tablet potency estimations
to the window size of the PDS algorithm. The evolution of the error of prediction
depends on the number of latent variable selected and the window size of the PDS
algorithm. This figure shows that the most important criteria was the number of
latent variables. The window size of the PDS algorithm was not a critical parameter.
The model was built with 5 latent variables and the PDS algorithm used a window
size equal to 11.
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Fig. 6. Tablet potency and confidence interval of the external test set 1. This figure
shows the results provided by the graphical interface. It gave the tablet potencies
of each sample analysed by NIR. These tablet potencies were surrounded by a min-
imum and a maximum which defined a confidence interval for a specific risk. A

F
i
i

nfluence of bootstrap number on the results variability.

Number of bootstrap 5 100 300
Standard deviation 2.17 1.61 0.85

qual to 2.4%. This calibration transfer technique was very useful in
eveloping a model which can be used on two NIR spectrometer.

.3. Estimation of confidence intervals

The bootstrap of PLS residuals technique was used to calcu-
ate the confidence interval of the tablet potency values calculated
y the PLS model. The confidence interval was defined so that

HPLC measurement of tablet potency must be within the
nterval if a chemical analysis is performed. The first step of
his approach was to calculate the PLS residuals corresponding
o the difference between PLS calculation and HPLC measure-

ent for each sample. Note that the PLS model must be fully
ptimised during the previous steps in order to obtain quality
esults.

The number of bootstrap was optimised to obtain the most
eproducible results. This bootstrap number was chosen by study-
ng the variability of repeated calculations. By increasing the
umber of bootstraps, the confidence intervals were decreased.
able 2 shows the results of the standard deviation for 10 repeated
alculations. A number of bootstrap equal to 1000 was chosen for
he study.

PLS residuals were bootstrapped and added to the PLS tablet
otency calculations of the model to obtain new estimated cal-
ulations. Regression coefficients, bootstrap estimators and the
ootstrap estimated error were calculated using this new set of
alculations. The distribution of z, calculated from Eq. (11) made it
ossible to determine two quantiles with a risk of 1%.

These quantiles were the basics for confidence interval deter-
ination. For each sample, and then for each tablet potency
alculation, two limits were established. The tablet potency
btained with the PLS model was surrounded by a upper and a
ower limits defined by the interval (14).

An easy graphical interface was developed under the Matlab
nvironment in order to facilitate the use of this algorithm and to

ig. 7. Model calculations and HPLC measurements of tablet potency for test set 1. This
nterval (blue squares) of each sample. The green cross represents the HPLC measureme
nterval. (For interpretation of the references to color in this figure legend, the reader is r
green test passed message is displayed because all the tablet potencies and confi-
dence intervals are within the content uniformity limits. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
the article.)

compile all the steps presented in this paper. This interface includes
the transfer of spectra (if spectra were acquired on the production
spectrometer), tablet potency calculations and confidence interval
estimations for each tablet.
Fig. 6 shows the confidence interval calculation of test set 1. The
graphical results show the tablet potency values surrounded by the
upper and lower limits and the table at the bottom provides the
numerical values of the predictions and limits. A green test passed
message is displayed because all the predictions are in the first level

figure represents the tablet potencies (red circles) surrounded by the confidence
nts of each sample. All the HPLC measurements were included in the confidence

eferred to the web version of the article.)
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f the European Pharmacopoeia specifications [22] (lower than 85%
r upper than 115%).

To evaluate the whole model, HPLC measurements were per-
ormed on samples from test set 1 constituted by 30 samples from
production batch. As shown in Fig. 7, all the HPLC measurements

represented by the green cross in Fig. 7) were included in the con-
dence interval (represented by the blue squares in Fig. 7) defined
y the bootstrap of PLS residual method.

. Conclusions

Quantifying the content of API in a tablet is a real challenge in
he pharmaceutical field as it is important to ensure that the cor-
ect quantity of substance is delivered to the patient. In this study,
PLS model for tablet potency determination was developed by

sing NIR spectroscopy. A calibration transfer method was carried
ut to improve the poor predictions obtained when the model was
sed with the spectra acquired at the production site. This method
equired the acquisition of transfer samples with the spectrometers
rom the different sites. The last part of this development, which
onsisted in the determination of a confidence interval, was based
n residual bootstrapped calculations, and provided an answer on
he error of the tablet potency estimation. A graphical interface,
ncluding all the steps of the development, was developed making
t possible for production operators to use this approach.

This development ensures that the tablet potency value
btained by a classical chemical analysis is close to the model
alculation and within the confidence interval determined by the
ootstrap technique.
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